CHEMISTRY - CET 2025 - VERSION CODE - D1 KEYS

- 1. The correct sequence of α amino acid, hormone, vitamin, carbohydrates respectively is
 - (1) Aspartic acid, Insulin, Ascorbic acid, rhamnose
 - (2) Thiamine, Thyroxine, Vitamin A, Glucose
 - (3) Glutamine, Insulin, Aspartic acid, Fructose
 - (4) Arginine, Testosterone, Glutamic acid, Maltose

Ans (1)

Aspartic acid: α-amino acid

Insulin: Hormone

Ascorbic acid : Vitamin A Rhamnose : Carbohydrate

- 2. Which examples of carbohydrates exhibit α -link (α -glycosidic link) in their structure?
 - (1) Glucose and Fructose

(2) Maltose and Lactose

(3) Amylose and Amylopectin

(4) Cellulose and Glycogen

Ans (3)

 α -glycosidic linkage is present in both amylose and amylopectin.

- 3. In the titration of potassium permanganate (KMnO₄) against Ferrous ammonium sulphate (FAS) solution, dilute sulphuric acid but not nitric acid is used to maintain acidic medium, because
 - (1) Nitric acid is a weak acid than sulphuric acid
 - (2) It is difficult to identify the end point
 - (3) Nitric acid doesn't act as an indicator
 - (4) Nitric acid itself is an oxidising agent

Ans (4)

Nitric acid being itself an oxidising agent, oxidises FAS.

- 4. The group reagent NH₄Cl(s) and aqueous NH₃ will precipitate which of the following ion?
 - $(1) Ca^{2+}$

- (2) NH_4^+
- $(3) Al^{3+}$

 $(4) Ba^{2+}$

Ans (3)

NH₄Cl and NH₃ (aq) are group reagents for 3rd group basic radicals.

- 5. In the preparation of sodium fusion extract, the purpose of fusing organic compound with a piece of sodium metal is to
 - (1) Decrease the melting point of the compound
 - (2) Convert the organic compound into vapour state
 - (3) Convert the elements of the compound from covalent form to ionic form
 - (4) Convert the elements of the compound from ionic form to covalent form

Ans (3)

Sodium metal reacts with organic compound and convert the elements present in it to ionic compounds.

1

- 6. The sodium fusion extract is boiled with concentrated nitric acid while testing for halogens. By doing so, it
 - (1) decomposes Na₂S and NaCN, if formed
- (2) helps in precipitation of AgCl
- (3) increases the solubility of AgCl
- (4) increases the concentration of NO_3^- ion

Ans (1)

Concentrated nitric acid decomposes Na₂S and NaCN and prevents the interference of S²⁻ and CN⁻ ions with the test for X⁻ ions.

7. Which of the following is not an aromatic compound?

Ans (2)

Cyclopenta-1, 3-dienyl cation in option 2 does not satisfy $(4n + 2) \pi$ electrons rule (Huckel's rule).

8. The IUPAC name of the given organic compound is

$$HC \equiv C - CH = CH - CH = CH_2$$

- (1) Hexa-3, 5-dien-1-yne
- (2) Hexa-1-yn-3, 5-diene
- (3) Hexa-5-yn-1, 3-diene
- (4) Hexa-1, 3-dien-5-yne

Ans (4)

According to IUPAC nomenclature, C=C is given higher priority while numbering the parent chain whereas the name of molecule must end with yne if C≡C is also present.

9. Among the following, identify the compound that is not an isomer of hexane

$$(1) CH3 - CH - CH2 - CH2 - CH3$$

$$\begin{array}{c} \text{(2) CH}_{3}\text{--CH}_{2}\text{--CH}\text{--CH}_{2}\text{--CH}_{3} \\ \text{--CH}_{3} \end{array}$$

$$(3) CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$

Ans (4)

Cycloalkane satisfies the general formula C_nH_{2n} whereas alkanes satisfy the general formula C_nH_{2n+2} .

- (1) Alkyl halide
- (2) Allylic halide
- (3) Benzyl halide (4) Aryl halide

Ans (3)

Cl is attached to sp³ hybridised carbon which in turn is attached to sp² hybridised carbon of benzene ring. Therefore, it is a Benzylic halide.

11. Chlorobenzene reacts with bromine gas in the presence of Anhyd AlBr₃ to yield p-Bromochlorobenzene.

This reaction is classified as _

(1) Addition reaction

- (2) Elimination reaction
- (3) Nucleophilic substitution reaction
- (4) Electrophilic substitution reaction

This an example for electrophilic substitution reaction.

- 12. The organometallic compound (CH₃)₃ CMgBr on reaction with D₂O produces _____
 - $(1) \left(CH_3 \right)_3 CD$
- (2) $(CH_3)_3 COD$ (3) $(CD_3)_3 CD$
- $(4) \left(CD_3 \right)_3 COD$

Ans (1)

$$(CH_3)_3CMgBr + D_2O \longrightarrow (CH_3)_3C - D + Mg(OD)Br$$

13. The major product formed when 1-Bromo-3-Chlorocyclobutane reacts with metallic sodium in dry ether is

- 14. Ethyl alcohol is heated with concentrated sulphuric acid at 413 K. The major product formed is
 - (1) CH₃ COO C₂H₅
- (2) $C_2H_5 O C_2H_5$
- $(3) CH_3 O C_3H_7$
- (4) $CH_2 = CH_2$

Ans (2)

$$2\text{CH}_{3}\text{CH}_{2}\text{OH} \xrightarrow{\Delta, \text{conc.H}_{2}\text{SO}_{4}} \text{CH}_{3}\text{CH}_{2}\text{OCH}_{2}\text{CH}_{3} + \text{H}_{2}\text{O} \text{ (Dehydration)}$$

- 15. Phenol can be distinguished from propanol by using the reagent
 - (1) Sodium metal
- (2) Bromine water
- (3) Iron metal
- (4) Iodine in alcohol

2,4,6-Tribromophenol

16. Match the following with their pKa values

	Acid	pKa		
(I)	Phenol	(a)	16	
(II)	p-Nitrophenol	(b)	0.78	
(III)	Ethyl alcohol	(c)	10	
(IV)	Picric acid	(d)	7.1	

(1)
$$I - b$$
, $II - a$, $III - d$, $IV - c$

(2)
$$I - c$$
, $II - d$, $III - a$, $IV - b$

(3)
$$I - a$$
, $II - d$, $III - c$, $IV - b$

(4)
$$I - a$$
, $II - b$, $III - c$, $IV - d$

Ans (2)

$$pK_a \propto \frac{1}{acidic\ nature}$$

Order of acidic nature:

Ethanol
$$<$$
 Phenol $<$ p $-$ Nitrophenol $<$ Picric acid $_{0.78}$

Match of acid with their pK_a values : I - c, II - d, III - a, IV - b

17.
$$CH_3$$
 $-C-OCH_3 + HI \longrightarrow A + B$. A and B respectively are CH_3

CH₃
(1)
$$A = CH_3OH$$
, $B = CH_3 - C - OH$

$$CH_3$$

- 18. Oxidation of Toluene with chromyl chloride followed by hydrolysis gives Benzaldehyde. This reaction is known as _____
 - (1) Cannizzaro reaction
- (2) Etard reaction
- (3) Kolbe reaction
- (4) Stephen reaction

Ans (2)

$$\begin{array}{c|c} CH_3 & CHC \\ \hline \\ + CrO_2Cl_2 & \hline \\ \end{array}$$

Name of the reaction: Etard reaction

19. **Statement-I**: Reduction of ester by DIBAL-H followed by hydrolysis gives aldehyde.

Statement-II: Oxidation of benzyl alcohol with aqueous KMnO₄ leads to the formation of Benzaldehyde.

Among the above statements, identify the correct statement.

- (1) Both statements-I and II are true
- (2) Both statements-I and II are false
- (3) Statement-I is true but statement-II is false
- (4) Statement-I is false but statement-II is true

Ans (3)

20. Arrange the following compounds in their decreasing order of reactivity towards Nucleophilic addition reaction.

CH₃COCH₃, CH₃COC₂H₅, CH₃CHO

- (1) $CH_3CHO > CH_3COC_2H_5 > CH_3COCH_3$
- (2) $CH_3CHO > CH_3COCH_3 > CH_3COC_2H_5$
- (3) CH₃COCH₃ > CH₃CHO > CH₃COC₂H₅
- (4) $CH_3COC_2H_5 > CH_3COCH_3 > CH_3CHO$

Ans (2)

Decreasing order of reactivity towards nucleophilic addition reaction:

 $CH_3CHO > CH_3COCH_3 > CH_3COC_2H_5$

- 21. Which of the following has most acidic Hydrogen?
 - (1) Chloroacetic acid
- (2) Propanoic acid
- (3) Dichloroacetic acid (4) Trichloroacetic acid

Ans (4)

More the number of EWG, more the acidic strength of carboxylic acid.

- 22. Which of the following reagents are suitable to differentiate Aniline and N-methylaniline chemically?
 - (1) Chloroform and Alcoholic potassium hydroxide
 - (2) Acetic anhydride
 - (3) Br₂ water
 - (4) Conc. Hydrochloric acid and anhydrous zinc chloride

Ans (1)

Carbylamine reaction is answered only by amine (Aniline) not by 2° amine (N-methylaniline).

23. Which of the following reaction/s does not yield an amine?

I.
$$R - X + NH_3 \xrightarrow{\Delta}$$

II.
$$R-C \equiv N \xrightarrow{H_2/N_i} \frac{H_2/N_i}{N_a(H_g)/C_2H_5OH}$$

III.
$$R - C \equiv N + H_2O \xrightarrow{H^+}$$

IV. R—
$$\stackrel{O}{=}$$
 C — $NH_2 + 4[H] \xrightarrow{i) \text{LiAlH}_4}$

- (1) Both II and IV
- (2) Both I and III
- (3) Only II
- (4) Only III

$$R-C \equiv N + H_2O \xrightarrow{H^+} R-C-OH$$

24. Match the compounds given in List-I with the items given in List-II

	1 8		8		
List-I			List-II		
(I)	Benzenesulphonyl Chloride	(a)	Zwitterion		
(II)	Sulphanilic acid	(b)	Hinsberg reagent		
(III)	Alkyl Diazonium salts	(c)	Dyes		
(IV)	Aryl Diazonium salts	(d)	Conversion to alcohols		

(1) I - b, II - a, III - d, IV - c

(2) I - c, II - b, III - a, IV - d

(3) I - a, II - c, III - b, IV - d

(4) I - c, II - a, III - d, IV - b

Ans (1)

25. The number of orbitals associated with 'N' shell of an atom is

(1) 4

- (2) 16
- (3)32
- (4) 3

Ans (2)

N-shell has n = 4

$$L = 0, 1, 2, 3 : 4s, 4p, 4d, 4f = 16$$
 orbitals

26. According to the Heisenberg's Uncertainty principle, the value of $\Delta v.\Delta x$ for an object whose mass is 10^{-6} kg is (h = 6.626×10^{-34} Js)

- $(1) 5.2 \times 10^{-29} \text{ m}^{-2} \text{ s}^{-1} \qquad (2) 3.0 \times 10^{-24} \text{ m}^{-2} \text{ s}^{-1} \qquad (3) 4.0 \times 10^{-26} \text{ m}^{-2} \text{ s}^{-1} \qquad (4) 3.5 \times 10^{-25} \text{ m}^{-2} \text{ s}^{-1}$

Ans (1)

$$\Delta x \times \Delta v \ge \frac{h}{4\pi m}$$

$$\ge \frac{6.6 \times 10^{-34}}{4 \times 3.14 \times 10^{-6}}$$

$$\ge 0.52 \times 10^{-28}$$

$$\ge 5.2 \times 10^{-29} \text{ m}^{-2} \text{ s}^{-1}$$

27. Given below are two statements.

Statement-I: Adiabatic work done is positive when work is done on the system and internal energy of the system increases.

Statement-II: No work is done during free expansion of an ideal gas.

In the light of the above statements, choose the correct answer from the options given below.

- (1) Both statement-I and statement-II are true
- (2) Both statement-I and statement-II are false
- (3) Statement-I is true but statement-II is false
- (4) Statement-I is false but statement-II is true

Ans (1)

Adiabatic condition, q = 0

$$\Delta U = +w$$

Ideal gas upon free expansion, no work is done (since $p_{ext} = 0$).

- 28. Which one of the following reactions has $\Delta H = \Delta U$?
 - (1) $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$
 - (2) $CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$

(3)
$$C_6H_6(1) + \frac{15}{2}O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(1)$$

(4)
$$2HI(g) \rightleftharpoons H_2(g) + I_2(g)$$

Ans (4)

$$2HI(g) \Longrightarrow H_2(g) + I_2(g)$$

$$\Delta n = 0$$

$$\Delta H = \Delta U + \Delta nRT$$

$$\Delta H = \Delta U$$

- 29. Identify the incorrect statements among the following:
 - (a) All enthalpies of fusion are positive.
 - (b) The magnitude of enthalpy change does not depend on the strength of the intermolecular interactions in the substance undergoing phase transformations.
 - (c) When a chemical reaction is reversed, the value of $\Delta r H^{\circ}$ is reversed in sign.
 - (d) The change in enthalpy is dependent of path between initial state (reactants) and final state (products).
 - (e) For most of the ionic compounds, $\Delta_{sol}H^{\circ}$ is negative.
 - (1) a and c only
- (2) a, b and d
- (3) b, d and e
- (4) a, d and e

Ans (3)

- 30. Which of the following statements is/are true about equilibrium?
 - (a) Equilibrium is possible only in a closed system at a given temperature.
 - (b) All the measurable properties of the system remain constant at equilibrium.
 - (c) Equilibrium constant for the reverse reaction is the inverse of the equilibrium constant for the reaction in the forward direction.
 - (1) Only a
- (2) Only b
- (3) Only c
- (4) a, b and c

Ans (4)

- 31. According to Le Chatelier's principle, in the reaction $CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$, the formation of methane is favoured by
 - (a) increasing the concentration of CO
 - (b) increasing the concentration of H₂O
 - (c) decreasing the concentration of CH₄
 - (d) decreasing the concentration of H₂
 - (1) a and b
- (2) a and c
- (3) b and d
- (4) a and d

Ans (2)

- 32. The equilibrium constant at 298K for the reaction $A + B \rightleftharpoons C + D$ is 100. If the initial concentrations of all the four species were 1M each, then equilibrium concentration of D (in mol L^{-1}) will be
 - (1) 0.818
- (2) 0.182
- (3) 1.818
- (4) 1.182

Ans (3)

$$A + B \rightleftharpoons C + D$$

t = 0

t = t

$$(1-x)$$
 $(1-x)$ $(1+x)$ $(1+x)$

$$K_{eq} = \frac{[C][D]}{[A][B]}$$

$$K_{eq} = \frac{(1+x)(1+x)}{(1-x)(1-x)}$$

$$100 = \frac{(1+x)^2}{(1-x)^2}$$

$$\sqrt{\frac{(1+x)^2}{(1-x)^2}} = \sqrt{100}$$

$$\frac{1+x}{1-x} = 10$$

$$1 + x = 10 - 10x$$

$$11x = 9$$

$$x = 0.818$$

$$[D] = 1 + x$$

$$= 1 + 0.818 = 1.818$$

- 33. Among the following 0.1 m aqueous solutions, which one will exhibit the lowest boiling point elevation, assuming complete ionisation of the compounds in solution?
 - (1) Sodium chloride

(2) Aluminium chloride

(3) Aluminium sulphate

(4) Potassium sulphate

Ans (1)

Colligative properties depend only on the number of particles in solution.

34. Variation of solubility with temperature T for a gas in liquid is shown by the following graphs. The correct representation is

Ans (4)

Dissolution of a gas in a liquid is an exothermic process. Solubility decreases with increase in temperature.

- 35. 180 g of glucose, C₆H₁₂O₆, is dissolved in 1 kg of water in a vessel. The temperature at which water boils at 1.013 bar is _____ (given, K_b for water is 0.52K kg mol⁻¹. Boiling point for pure water is 373.15 K)
 - (1) 373.202 K
- (2) 373.67 K
- (3) 373.15 K
- (4) 373.0 K

Ans (2)

$$\Delta T_b = \frac{K_b w_2 1000}{M_2 w_1}$$
$$= \frac{0.52 \times 180 \times 1000}{180 \times 1000}$$

$$T_b = 373.15 + 0.52$$

= 373.67 K

36. If N₂ gas is bubbled through water at 293 K, how many moles of N₂ gas would dissolve in 1 litre of water? Assume that N₂ exerts a partial pressure of 0.987 bar. [Given K_H for N₂ at 293 K is 76.48 K bar]

(1)
$$7.16 \times 10^{-3}$$

(2)
$$0.716 \times 10^{-3}$$
 (3) 7.16×10^{-5}

$$(4) 7.16 \times 10^{-4}$$

Ans (2 and 4)

$$x_{N_2} = \frac{p_{N_2}}{K_H} = \frac{0.987}{76.48 \times 10^3} = 1.29 \times 10^{-5}$$

$$n_{H_2O} = \frac{10^3}{18} = 55.55 \,\text{moles}$$

$$x_{N_2} = \frac{n_{N_2}}{n_{N_2} + 55.55} = \frac{n_{N_2}}{55.55}$$

$$1.29 \times 10^{-5} = \frac{n_{\text{N}_2}}{55.55}$$

$$n_{N_2} = 1.29 \times 10^{-5} \times 55.55$$

=
$$7.16 \times 10^{-4}$$
 (**OR**) 0.716×10^{-3}

- 37. The correct statement/s about Galvanic cell is/are
 - (a) Current flows from cathode to anode
 - (b) Anode is positive terminal
 - (c) If $E_{cell} < 0$, then it is spontaneous reaction
 - (d) Cathode is positive terminal
 - (1) b only
- (2) a and b only
- (3) a, b and c
- (4) a and d only

Ans (4)

- 38. The electronic conductance depends on
 - (1) Size of the ions

- (2) Nature of electrolyte added
- (3) The number of valence electrons per atom
- (4) Concentration of the electrolyte

Ans (3)

- 39. For a given half cell, $Al^{3+} + 3e^{-} \longrightarrow Al$ on increasing the concentration of aluminium ion, the electrode potential will
 - (1) Increase

(2) Decrease

(3) No change

(4) First increase then decrease

Ans (1)

$$E_{cell} = E_{cell}^{o} + \frac{0.0591}{n} \log[Al^{3+}] \text{ i.e., } E_{cell} \propto [Al^{3+}]$$

40. Match the following and select the correct option for the quantity of electricity, in Cmol⁻¹, required to deposit various metals at cathode.

I	List - I	List - II		
(a)	Ag ⁺	(i)	386000 Cmol ⁻¹	
(b)	Mg ²⁺	(ii)	289500 Cmol ⁻¹	
(c)	Al ³⁺	(iii)	96500 Cmol ⁻¹	
(d)	Ti ⁴⁺	(iv)	193000 Cmol ⁻¹	

(1)
$$a - i$$
; $b - ii$; $c - iii$; $d - iv$

(2)
$$a - ii$$
; $b - i$; $c - iv$; $d - iii$

(3)
$$a - iii$$
; $b - iv$; $c - ii$; $d - i$

$$(4) a - iv; b - iii; c - i; d - ii$$

Ans (3)

$$Ag^+ + e^- \rightarrow Ag \Rightarrow 1F = 96500 C$$

$$Mg^{+2} + 2e^{-} \rightarrow Mg \Rightarrow 2F = 193000 C$$

$$Al^{+3} + 3e^{-} \rightarrow Al \Rightarrow 3F = 289500 C$$

$$Ti^{4+} + 4e^{-} \rightarrow Ti \Rightarrow 4F = 386000 \text{ C}$$

- 41. Catalysts are used to increase the rate of a chemical reaction. Because it
 - (1) Increases the potential energy barrier
 - (2) Increases the activation energy of the reaction
 - (3) Decreases the activation energy of the reaction
 - (4) Brings about improper orientation of reactant molecules

Ans (3)

- 42. Half-life of a first order reaction is 20 seconds and initial concentration of reactant is 0.2M. The concentration of reactant left after 80 seconds is
 - (1) 0.2 M
- (2) 0.1 M
- (3) 0.05 M
- (4) 0.0125 M

Ans (4)

Number of
$$t_{\frac{1}{2}} = \frac{\text{total time taken}}{\text{half-life period}} = \frac{80}{20} = 4$$

$$0.2 \xrightarrow{(1)} 0.1 \xrightarrow{(2)} 0.05 \xrightarrow{(3)} 0.025 \xrightarrow{(4)} 0.0125$$

43. In the given graph, E_a for the reverse reaction will be

- (1) 305 KJ
- (2) 125 KJ
- (3) 215 KJ
- (4) 90 KJ

Ans (2)

 $\Delta H = E_a$ forward – E_a backward

90 = 215

 E_a backward = 215 - 90

= 125 kJ

- 44. For the reaction $2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$ initial concentration of N_2O_5 is 2.0 mol L^{-1} and after 300 min, it is reduced to 1.4 mol L⁻¹. The rate of production of NO₂ (in mol L⁻¹ min⁻¹) is
 - $(1) 4 \times 10^{-3}$
- $(2) 2.5 \times 10^{-4}$
- $(3) 4 \times 10^{-4}$
- $(4) 2.5 \times 10^{-3}$

Ans (1)

$$\frac{1}{2} \frac{d[N_2O_5]}{dt} = \frac{1}{4} \frac{d[NO_2]}{dt}$$

$$\frac{d[NO_2]}{dt} = 2\left\{ -\frac{d[N_2O_5]}{dt} \right\}$$

$$= \frac{2\{-(1.4 - 2.0)\}}{300}$$

 $= 4 \times 10^{-3} \text{ mol L}^{-1} \text{ min}^{-1}$

- 45. Which of the following methods of expressing concentration are unitless?
 - (1) Molality and Molarity
 - (2) Mole fraction and Mass percent (W/W)
 - (3) Molality and Mole fraction
 - (4) Mass percent (W/W) and Molality

Ans (2)

- 46. Select the INCORRECT statement/s from the following:
 - (a) 22 books have infinite significant figures
 - (b) In the answer of calculation 2.5×1.25 has four significant figures.
 - (c) Zero's preceding to first non-zero digit are significant.
 - (d) In the answer of calculation 12.11 + 18.0 + 1.012 has three significant figures.
 - (1) (a) and (b) only

(2) (b), (c) and (d)

(3) (b) and (c) only

(4) (b) and (d) only

Ans (3)

47. Given below are the atomic masses of the elements

Element	Li	Na	Cl	K	Ca	Br	Sr	I	Ba
Atomic mass (g mol ⁻¹)	7	23	35.5	39	40	80	88	127	137

Which of the following doesn't form triad?

- (1) Li, Na, K
- (2) Ba, Sr, Ca
- (3) Cl, Br, I
- (4) Cl, K, Ca

Ans (4)

48. The change in hybridization (if any) of the 'Al' atom in the following reaction is $AlCl_3 + Cl^- \rightarrow AlCl_4$

(1) sp^3 to sp^2

(2) No change in the hybridisation state

(3) sp² to sp³

(4) sp³ to sp³ d

Ans (3)

49. Match List I with List II and select the correct option:

I	List – I		List – II
(Mole	ecule / ion)	(B	ond order)
(a)	NO	(i)	1.5
(b)	СО	(ii)	2.0
(c)	O_2^-	(iii)	2.5
(d)	O_2	(iv)	3.0

(1) a - iv, b - iii, c - ii, d - i

(2) a - iii, b - iv, c - i, d - ii

(3) a -i, b -iv, c -iii, d -ii

(4) a - ii, b - iii, c - iv, d - i

Ans (2)

NO (15 electrons): $\sigma 1s^2 \sigma * 1s^2 \sigma 2s^2 \sigma * 2s^2 \sigma 2p_z^2 \pi 2p_x^2 = \pi 2p_y^2 \pi * 2p_x^1 = \pi * 2p_y^0$

$$B.O = \frac{1}{2}(10 - 5)$$

$$= 2.5$$

CO (14 electrons): $\sigma ls^2 \sigma * 1s^2 \sigma 2s^2 \sigma * 2s^2 \sigma 2p_x^2 \pi 2p_y^2 = \pi 2p_y^2$

$$B.O = \frac{1}{2}(10 - 4)$$

$$= 3$$

 O_2^- (17 electrons): $\sigma ls^2 \sigma^* ls^2 \sigma 2s^2 \sigma^* 2s^2 \sigma 2p_z^2 \pi 2p_x^2 = \pi 2p_y^2 \pi^* 2p_x^2 = \pi^* 2p_y^2$

B.O =
$$\frac{1}{2}(10-7)$$

$$= 1.5$$

= 1.5 O₂ (16 electrons) : $\sigma 1s^2 \sigma * 1s^2 \sigma 2s^2 \sigma * 2s^2 \sigma 2p_z^2 \pi 2p_x^2 = \pi 2p_y^2 \pi * 2p_x^1 = \pi * 2p_y^1$

$$B.O = \frac{1}{2}(10 - 6)$$

50. The electronic configuration of X and Y are given below:

$$X : 1s^2 2s^2 2p^6 3s^2 3p^3$$

 $Y : 1s^2 2s^2 2p^6 3s^2 3p^5$

Which of the following is the correct molecular formula and type of bond formed between X and Y?

(1) X₂Y, covalent bond

(2) X_3y , ionic bond

(3) X₂Y₃, coordinate bond

(4) XY₃, covalent bond

Ans (4)

51. Match List – I with List – II.

List – I		List – II		
(Types of redox reactions)		(Examples)		
(a)	Combination reaction	(i)	$Cl_2(g) + 2Br^-(aq) \longrightarrow 2Cl^-(aq) + Br_2(l)$	
(b)	Decomposition reaction	(ii)	$2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$	
(c)	Displacement reaction	(iii)	$CH_4(g) + 2O_2(g) \xrightarrow{\Delta} CO_2(g) + 2H_2O(l)$	
(d)	Disproportionation reaction	(iv)	$2H_2O(1) \xrightarrow{\Delta} 2H_2(g) + O_2(g)$	

Choose the correct answer from the options given below.

(1)
$$a - iii$$
, $b - ii$, $c - i$, $d - iv$

(2)
$$a - iv$$
, $b - iii$, $c - i$, $d - ii$

$$(3)$$
 a $-ii$, b $-i$, c $-iv$, d $-iii$

$$(4)$$
 a $-$ iii, b $-$ iv, c $-$ i, d $-$ ii

Ans (4)

52. In the following pairs, the one in which both transition metal ions are colourless is

(2)
$$Sc^{3+}$$
, Zn^{2+} (3) V^{2+} , Ti^{3+}

(3)
$$V^{2+}$$
, Ti^{3+}

$$(4) Zn^{2+}, Mn^{2+}$$

Ans (2)

- 53. In the reaction between hydrogen sulphide and acidified permanganate solution,
 - (1) H₂S is oxidised to S, MnO₄⁻ is reduced to Mn²⁺
 - (2) H_2S is reduced to S, MnO_4^- is oxidised to Mn^{2+}
 - (3) H₂S is oxidised to SO₂, MnO₄⁻ is reduced to MnO₂
 - (4) H₂S is reduced to SO₂, MnO₄⁻ is oxidised to Mn²⁺

Ans (1)

$$5H_2S + 2KMnO_4 + 8H_2SO_4 \rightarrow 5S + 2MnSO_4 + K_2SO_4 + 8H_2O_4$$

- 54. A member of the Lanthanoid series which is well known to exhibit +4 oxidation state is
 - (1) Cerium
- (2) Samarium
- (3) Europium
- (4) Erbium

Ans (1)

- 55. In which of the following pairs, both the elements do not have $(n-1) d^{10} ns^2$ configuration?
 - (1) Ag, Cu
- (2) Cu, Zn
- (3) Zn, Cd
- (4) Cd, Hg

Ans (1)

- 56. A ligand which has two different donor atoms and either of the two ligates with the central metal atom/ion in the complex is called _____
 - (1) Ambidentate ligand

(2) Chelate ligand

(3) Unidentate ligand

(4) Polydentate ligand

Ans (1)

- 57. Which of the following statements are true about $\left[\text{NiCl}_4\right]^{2^-}$?
 - (a) The complex has tetrahedral geometry.
 - (b) Co-ordination number of Ni is 2 and oxidation state is +4.
 - (c) The complex is sp³ hybridised.
 - (d) It is a high spin complex.
 - (e) The complex is paramagnetic.
 - (1) a, b, c and d
- (2) a, c, d and e
- (3) a, b, d and e
- (4) b, c, d and e

Ans (2)

- 58. Which formula and its name combination is incorrect?
 - (1) [Pt(NH₃)₂ Cl(NO₂)] Diamine chloridonitrito-N-platinum (II)
 - (2) K₃[Cr(C₂O₄)₃], Potassium trioxalatochromate (III)
 - (3) [CoCl₂(en)₂]Cl, Dichloridobis (ethane 1, 2 diamine) cobalt (III) chloride
 - (4) [Co(NH₃)₅(CO₃)]Cl, Pentaamine carbonylcobalt (III) chloride

Ans (1 and 4)

The correct IUPAC name of $\lceil \text{Co}(\text{NH}_3)_5(\text{CO}_3) \rceil \text{Cl}$ is pentaamine carbonatocobalt (III) chloride

Formula

IUPAC Name

 $[Pt(NH_3)_2 \ Cl \ (NO_2)]$

Diammine chloridonitrito-N-platinum (II)

[Co(NH₃)₅ (CO₃)Cl]

Pentamminecarbonatochloridocobalt(III)

- 59. In the complex ion $[Fe(C_2O_4)_3]^{3-}$, the Co-ordination number of Fe is
 - (1) 3

- (2)4
- (3) 5

(4)6

Ans (4)

60. Match List-I with List-II for the following reaction pattern

Glu cos e — Reagent → Product → Structural prediction.

List-I (Reagents)		List-II (Structural prediction)		
(a) Acetic anhydride		(i)	Glucose has an aldehyde group	
(b)	Bromine water	(ii)	Glucose has a straight chain of six carbon atoms	
(c)	Hydroiodic acid	(iii)	Glucose has five hydroxyl groups	
(d)	Hydrogen cyanide	(iv)	Glucose has a carbonyl group	

Choose the correct answer from the options given below.

(1) a - iii, b - ii, c - i, d - iv

(2) a - iv, b - iii, c - ii, d - i

(3) a -iii, b -i, c -ii, d -iv

(4) a – i, b – ii, c – iii, d – iv

Ans (3)

* * *

